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1 Introduction

Machine learning is “a subfield of artificial intelligence that gives computers
the ability to learn without explicitly being programmed”1. Computers have
the ability to learn through developed models. Typically, the ”learning” of
a model is tuning weights and biases, which are just numbers that dictate a
model’s output. The learning of a model happens through minimizing some
error function by the tuning of weights and biases. The error function defines
a model’s behavior. If the function is flawed, then so will the model. For ex-
ample if a self driving car only has error when it hits an object, then it might
learn to never move. Within machine learning there are two overarching
branches: classification and prediction.

Classification seeks “to identify mathematical and/or statistical relation-
ships between independent variables (discrete or continuous) that can effec-
tively distinguish or characterize various levels with a nominal dependent
variable (categorical variable)”2. These independent variables are used as in-
puts to a model and the categorical/dependent variable is the output. For ex-
ample, measurements of a tumor could be the independent variables (weight,
height, width, etc.) and the categorical variable could whether the tumor is
cancerous (malignant or benign).

Prediction seeks to predict a dependent continuous variable (result) from
independent variables. For example, the independent variables could be mea-
surements of a home (square footage, land area, number of bedrooms) and
the resulting variable could be the price of a home.

As the use of machine learning becomes increasingly more popular for
data analysis, it is important that researchers and data analysts follow the
best practices of analysis. Choosing what model is right for the job is equally
important. This paper seeks to uncover what models should be used in a

1. Sara Brown. 2021.Machine learning, explained.MIT Management Sloan School. Last
modified April 2021. Accessed December 10, 2024. This source explains machine learning
concepts, applications, and types. Published by MIT, it provides a strong foundation for
understanding the field. https : //mitsloan .mit . edu/ ideas -made - to -matter/machine -
learning-explained.

2. Brian Carnahan, Gerard Meyer, and Lois-Ann Kuntz. 2003. Comparing statistical
and machine learning classifiers: alternatives for predictive modeling in human factors re-
search. This peer-reviewed source compares traditional statistical classifiers with machine
learning approaches, such as decision trees and genetic programming, in human perfor-
mance applications. Human Factors 45 (3): 408+.
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given scenario, the weaknesses of models, and the strengths of models.
Overfitting is one weakness of some commonly used machine learning

models. Overfitting is the process of which a model learns noise of the train-
ing data instead of just the patterns. This behavior makes a model less
reliable3.

1.1 Classification Models

Commonly used classification models include logistic regression, discrimi-
nant analysis, and naive Bayesian classification. These models are all easily
accessible in almost every programming language and data analysis software.

Logistic regression uses the sigmoid function to plot data points. For
simplicity, logistic regression will only be used with two categories, a positive
category (the second category) and a negative category (the first category),
e.g. malignant and benign. The sigmoid function looks like an ”s” curve.

Figure 1: Sigmoid Function

A linear combination of the independent variables is used as input to
the sigmoid function to generate a confidence value. The confidence value
measures how confident that the model is that a data point in a category. A
value of 0.8 would mean the model predicts with 80% confidence that the data
point is categorized into the second category. To continue with the example,
if the confidence value was 0.8 , then the model would predict that the tumor

3. Amazon. What is overfitting? Accessed April 1, 2025. https://aws.amazon.com/
what-is/overfitting/.
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was malignant. Whereas a value of 0.2 would mean the model predicts with
20% confidence that the data point is categorized into the second category
or an 80% confidence the data point is categorized into the first category. To
continue with the example, if the confidence value was 0.2 , then the model
would predict that the tumor was benign.

Logistic regression is the most widely used classification model. This
popularity comes from the ease of use, it is built into many programming
languages, and its ability to be general purpose. This model has been widely
applied to fields like medicine, biology, physics, and marketing.

Discriminant Analysis uses linear planes, lines, and hyperplanes to sepa-
rate data points into categories4. Originally developed by Sir Ronald Fisher,
the technique has been popular in statistical analysis. Planes separate data
points as shown in the figure below. This is an easy way to classify points
but it does lack nuance due to the linear nature. The model works best when
the groups of data points are most spread out from each other. It is one of
the simplest classification models.

Figure 2: Linear Discriminant Analysis

4. IBM. 2023. What is linear discriminant analysis (lda)? https://www.ibm.com/thin
k/topics/linear-discriminant-analysis. Last modified November 27, 2023. Accessed March
6, 2025. This source provides an informative introduction to LDA and its mathematical
foundations.
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The next classification model is a Naive Bayes’ classifier. This classifica-
tion model is based on conditional probability Bayes’ rule. Bayes’ rule states
that

P (A|B) =
P (A)P (B|A)

P (B)

Sometimes also written, in the more readable way,

The Posterior Probability =
Prior Probability ∗ Likelihood

Evidence

This theorem was developed by Thomas Bayes, an 18th century statisti-
cian and philosopher5. A Naive Bayes’ classifier assumes that each indepen-
dent variable is equally important which can be a disadvantage in capturing
nuance. A Gaussian Naive Bayes’ Classifier, which is what is implemented
later, assumes the continuous independent variables follow a Gaussian distri-
bution (also known as a normal distribution). It is a more outdated model
and can be derived from basic undergraduate statistics and does not require
any heavy computation6.

Figure 3: Gaussian (Normal) Distribution

5. D. R. Bellhouse. The reverend thomas bayes, frs: a biography to celebrate the tercente-
nary of his birth. Department of Biostatistics, Johns Hopkins Bloomberg School of Public
Health, Johns Hopkins University. Accessed March 6, 2025. This source provides informa-
tion on Thomas Bayes and his contributions to mathematics and statistics, emphasizing the
significance of Bayes’ rule. https://biostat.jhsph.edu/courses/bio621/misc/bayesbiog.pdf.

6. Kilian Weinberger. 2018. Bayes classifier and naive bayes, July. Accessed April 1,
2025. https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote05.html;
York Yong. Introduction to naive bayes algorithm - gaussian and multinomial variants.
Accessed April 1, 2025. https://www.kaggle.com/discussions/general/468420.

6

https://biostat.jhsph.edu/courses/bio621/misc/bayesbiog.pdf
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote05.html
https://www.kaggle.com/discussions/general/468420


1.2 Prediction Models

The prediction models that will be analyzed in this paper are ordinary least
squares regression, ridge regression, and LASSO regression. They seek to find
a linear model to predict a dependent variable using continuous independent
variables.

When testing prediction models, it is important to break up the data into
training and validation data. This is important so that the model is tested
on different data than it is trained on. Ordinary least squares regression
splits the data into training and validation sets of data. Ridge and LASSO
regression split data into training, testing, and validation sets of data where
the testing data is also used in the training but chooses a λ value instead of
affecting β7. Each model, using various methods, is trained on the training
data in order to minimize some error function. Then, the results of the
training can be captured on the validation set, recording the R2.

7. IBM. 2024. What is lasso regression?, January. Accessed April 1, 2025. https ://
www.ibm.com/think/topics/lasso-regression.
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Part I
Technical Analysis

2 Least Squares Regression

This section explains the technical aspects behind ordinary least squares
linear regression.

2.1 The Setup

Suppose we have data matrix

X =
(
x⃗1, . . . , x⃗d, 1⃗

)
∈ Rn×(d+1),

where each x⃗i is a column vector representing one of the d predictor variables
for all n observations, and the column 1⃗ accounts for the intercept term in
our model. The intercept term is b of y = mx + b. Also known as the bias
term.

We also assume there exists a true set of regression coefficients given by

β⃗ =


β1

β2
...

βd+1

 .

These coefficients represent the influence each predictor has on the outcome.
This is like m of y = mx+ b.8

8. Cosma Shalizi. 2015. Simple linear regression in matrix format. Carnegie Mellon
University Statistics and Data Science, Carnegie Mellon University. Last modified October
13, 2015. Accessed March 6, 2025. This lecture summary explains least squares regression
using matrix notation. https ://www.stat . cmu.edu/∼cshalizi/mreg/15/ lectures/13/
lecture-13.pdf.
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2.2 The Model

Our linear model assumes that the response variable y⃗ is described by

y⃗ = Xβ⃗ + ϵ⃗,

where ϵ⃗ is an error term independent of X. This means that our true results
y⃗ are a combination of the true linear relationship Xβ⃗ and some random
error ϵ⃗9.

2.3 Finding the Best Fit

The goal of linear regression is to find an estimate b⃗ for β⃗ that makes our
model’s predictions as close as possible to the real data. We do this by
minimizing the sum of the squared differences (error) between the true values

y⃗ and the predicted values Xb⃗. This sum is written as:

∥y⃗ −Xb⃗∥22.

To achieve the smallest possible error, we project y⃗ onto the column
space of X. This projection minimizes the length of ϵ⃗ and ensures that it is
orthogonal to every column in X.

2.4 Deriving the Coefficients

Assuming that the error vector is indeed orthogonal to the columns of X, we
have:

XT y⃗ = XTXb⃗+XT ϵ⃗,

and since XT ϵ⃗ = 0, this simplifies to:

XT y⃗ = XTXb⃗.

To solve for b⃗, we multiply both sides by the inverse of XTX, leading to the
well known least squares solution:

b⃗ = (XTX)−1XT y⃗.

This equation gives us the best-fit coefficients for our linear model based
on the input10.

9. Shalizi 2015.
10. Id.
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3 LASSO and Ridge Regression

This section explains why least squares may not be the best choice and some
alternatives for linear regression.

3.1 Weakness of the ordinary least squares regression

Overfitting. To see how overfitting is in an issue in the solution to ordinary
least squares, let’s express X as its SVD (Singular Value Decomposition)

X = UTΣV,

where U, V are orthogonal matrices and Σ is the diagonal matrix of the
singular values. Then consider

XT = V TΣU

⇒ XTX = V TΣUUTΣV

⇒ XTX = V TΣΣV

⇒ XTX = V TΣ2V

⇒ (XTX)−1 = (V TΣ2V )−1

⇒ (XTX)−1 = V TΣ2−1

V

If the columns of X are almost linearly dependent, a singular value in X will
be very small, which will cause numerical instability, because we are taking
the inverse of the square of Σ. So this means that if the columns are fairly
linearly dependent, it’s possible that a small perturbation in the data will
cause the smallest eigenvalue to change, which can cause a big change in the
inverse. Hence we might be drastically changing b⃗ just because of noise.

This problem may seem unsolvable, however, there exist many other types
of linear regression including ridge and LASSO regression. The ways the two
mentioned models combat overfitting are different yet similar.
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3.2 Ridge Regression

3.2.1 The Setup

We set up the same as ordinary least squares regression. With

X =
(
x⃗1, . . . , x⃗d, 1⃗

)
∈ Rn×(d+1),

and

β⃗ =


β1

β2
...

βd+1

 .

3.2.2 The Model

Our linear model (same as least squares) assumes that the response variable
y⃗ is described by

y⃗ = Xβ⃗ + ϵ⃗,

where ϵ⃗ is an error term independent of X. This means that our true results
y⃗ are a combination of the true linear relationship Xβ⃗ and some random
error ϵ⃗11.

3.2.3 Finding the Best Fit

Instead of just minimizing the sum of the squared residuals, we minimize

g(β) = λβTβ + ∥y −Xβ∥2

This extra term with λ helps prevent overfitting which is explained in the
next section. λ is a constant which there exists an algorithm to choose it
also described below.

3.2.4 Deriving the Coefficients

The derivation of these coefficients requires matrix calculus. The solution
will be at the bottom of the section.

∇β |y −Xβ∥2 = −2XT (y −Xβ)

11. Jacob Murel and Eda Kavlakoglu. 2023. What is ridge regression? Accessed Novem-
ber 21, 2023. https://www.ibm.com/think/topics/ridge-regression.
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∇β λ|β∥2 = 2λβ

g(β) = λβTβ + ∥y −Xβ∥2

⇒ ∇βg(β) = 2λβ − 2XT (y −Xβ)

To find a minimum using a gradient, you set it to 0 the same as a regular
derivative12.

0 = 2λβ − 2XT (y −Xβ)

Divide out the 2 and move term over

XT (y −Xβ) = λβ

XTy −XTXβ = λβ

XTy = λβ +XTXβ

Factor out β
XTy = (λI +XTX)β

(λI +XTX)−1XTy = β

Switch equation sides

β = (λI +XTX)−1XTy

This result for β is very similar to ordinary least squares regression, but there
is λI term in the inverse. This fixes the previous problem by not allowing
the values in the inverse to blow up. Each entry in the Σ2 + λI matrix is at
least λ which means the maximum eigenvalue of an entry in (XTX + λI)−1

is 1
λ
. To see this more concretely, consider

XTX + λI = V TΣ2V + λI

⇒ XTX + λI = V TΣ2V + V TλIV

⇒ XTX + λI = V T (Σ2 + λI)V

⇒ (XTX + λI)−1 = V T (Σ2 + λI)−1V.

In this case, (XTX+λI)−1 won’t ”blow up” as in the normal linear regression
case. This fixes the issue of having small eigenvalues when you have almost
linearly dependent columns.

12. Murel and Kavlakoglu 2023.
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3.2.5 Ridge Regression Algorithm

λ can also be optimized in a way. Consider the following way to pick λ. Split
your data into 3 parts, training, testing, and validation. 60% of the data is
training, 20% of the data is testing, and 20% of the data is validation. Use
the training set data to learn the regression coefficients for different λ, e.g.,

λ = (0.001, 0.01, 0.1, . . . , 10000, 100000, . . . ).

Then test each set of coefficients on the validation set, and then we keep the
best one. Then we use this best λ on the testing set to report your results
of the regression.

3.3 LASSO Regression

3.3.1 The Setup

We set up the same as ordinary least squares regression. With

X =
(
x⃗1, . . . , x⃗d, 1⃗

)
∈ Rn×(d+1),

and

β⃗ =


β1

β2
...

βd+1

 .

3.3.2 The Model

Our linear model (same as least squares and ridge) assumes that the response
variable y⃗ is described by

y⃗ = Xβ⃗ + ϵ⃗,

where ϵ⃗ is an error term independent of X. This means that our true results
y⃗ are a combination of the true linear relationship Xβ⃗ and some random
error ϵ⃗.
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3.3.3 Finding the Best Fit

Instead of just minimizing the sum of the squared residuals, we minimize

g(β) = λ∥β∥1 + ∥y −Xβ∥2

This extra term with λ helps prevent overfitting which is explained in the
next section. This is different from ridge regression as we use the L1 norm
of β instead of the Squared Euclidean norm13.

3.4 Deriving the coefficients

Unlike ridge regression, the L1 norm is not differentiable at points where
β = 0. Therefore, we must use subgradient methods. The subgradient of |βj|
with respect to βj is

∂

∂βj

=


1 βj > 0

−1 βj < 0

0 0 = βj

I have chosen 0 for when βj = 0, however, any subgradient between -1 and 1
is valid.

Thus, the subgradient of g(β) with respect to β is

∇βg(β) = −2XT (y −Xβ) + λs

Where s is a vector with sj chosen from the subgradient of βj. Setting this
subgradient to 0 does not yield a closed-form solution in general; however,
there is a special case when the columns of X are orthonormal.

For this special case, the solution for each coefficient can be written using
the soft-thresholding operator.

β̂j = Sλ(β̂j

OLS
)

Where
β̂j

OLS

is the ordinary least squares estimate for the jth component. And

Sλ(z) = sign(z)max{|z| − λ, 0}
13. Andreas Tilevak. 2022. Lasso regression - explained, July. Accessed April 1, 2025.

https://www.youtube.com/watch?v=bPFjfZWWQO0.
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3.4.1 LASSO Regression Algorithm

Because the previous solution is only a special case, a closed form solution
generally does not exist. Therefore iterative optimization algorithms such as
coordinate descent are used. The algorithm works by these steps:

1. Initialize an estimate for β with Ordinary Least Squares coefficients

2. Cycle through each coordinate j, updating βj by minimizing g(β) with
respect to βj

3. Apply the soft-thresholding operator to the partial residuals

4. Iterate until convergence

λ is chosen the same way as ridge regression through an iterative validat-
ing selection algorithm14.

4 Linear Discriminant Analysis

4.1 The Setup

Start with a classification problem that has K classes. We have n observa-
tions(data points), where each observation is a d-dimensional data vector x⃗i

and an associated class label yi ∈ {1, 2, . . . , K}. For each class k, define a
class mean u⃗k and assume that the data within each class are drawn from a
multivariate normal distribution with common covariance matrix Σ15.

4.2 The Model

4.2.1 Calculate Scatter Matrices

We calculate the within-class scatter matrix (SW ) and the between-class scat-
ter matrix (SB). SW measures the spread of samples within each class—that
is, how much the data points in a class deviate from their class mean µk. SB

measures the scatter of class means relative to the overall mean µ, showing
how separated the class means are.

14. Tilevak 2022.
15. IBM 2023.
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SW =
K∑
k=1

∑
x∈Ck

(x− µk)(x− µk)
T

SB =
K∑
k=1

nk(µk − µ)(µk − µ)T

Here:

• Ck represents the set of observations in class k.

• nk is the number of observations in class k.

• µ is the overall mean of all observations16.

4.2.2 Formulate the Optimization Problem

LDA’s goal is to find a projection vector w that maximizes the ratio of the
between-class scatter to the within-class scatter. This is known as the Fisher
criterion.

J(w) =
wTSBw

wTSww

Maximizing this ratio means finding a direction where class means are far
apart(large numerator) and data points within classes are tightly clustered(small
denominator)

4.3 Constraint

Directly maximizing the Fisher criterion is very challenging so we impose the
constraint:

wTSww = 1

Under this constraint, maximizing J(w) is equivalent to maximizing wTSBw.
With this constraint, we can use a Lagrange multiplier

16. 2023.
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4.4 Lagrangian

The Lagrangian function that uses this constraint is:

L(w, λ) = wTSBw − λ(wTSWw − 1)

where λ is a Lagrange multiplier17.

4.5 Derivation

Remember that:
f(w) = wTAw

∇wf(w) = 2Aw

when A is a symmetrical matrix. SW and SB are both symmetrical by defi-
nition. Therefore,

∂L

∂w
= 2SBw − 2λSWw = 0

Simplifying leads to
SBw = λSWw

4.6 Eigenvalue problem

Assuming SW is invertible, we rewrite the previous step as:

S−1
W SBw = λw

This should look very familiar if you are experienced with eigenvalues. Rewrite
S−1
W SB as U .

Uw = λw

Which is exactly the definition of eigenvectors. Simply find the greatest
eigenvalue and its corresponding eigenvector. Project points onto this vector
and project means on to this vector18.

17. Gábor Balázs. 2024. How can I use Lagrangian Multipliers to maximize a General
Rayleigh Quotient for Linear Discriminant Analysis. Forum, February. Accessed April 1,
2025. https://math.stackexchange.com/questions/4843451/how-can- i-use- lagrangian-
multipliers-to-maximize-a-general-rayleigh-quotient-for.
18. 2023.
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4.7 Use

For each data point, project it onto the found Eigenvector and find the
projected mean that it is closest to. The corresponding class mean is the
class that the model predicts the point belongs to.

5 Gaussian Naive Bayes’ Classifier

5.1 The Setup

Naive Bayes’ classifiers have three components. The first component is, of
course, Bayes’ Rule. The second component is the ”naive” assumption about
the data. The final component is the PDF/PMF that is used for calculating
probabilities.

Bayes’ Rule

P (A|B) =
P (A)P (B|A)

P (B)

Sometimes also written, in the more readable way,

The Posterior Probability =
Prior Probability · Likelihood

Evidence

The naive assumption is that all features of the data are independent condi-
tioned on the class. So if the data we were using was flowers, the class could
be rose and the features could be pedal size, stem size, leaf size, etc.. It is
reasonable to assume that the size of a flowers petal’s are unaffected by the
size of the stem given it is a rose or poppy or some other type of flower. This
is the Naive assumption19

P (xi|x1, . . . , xn, Ck) = P (xi|Ck)

Because we are looking at a Gaussian Naive Bayes’ classifier instead of

a Multinomial, Bernoulli, Semi-supervised parameter estimation, or other

Naive Bayes’ classifier, we use the Gaussian Distribution. Therefore the

PDF is

P (x, µ, σ2) =
1

σ
√
2π

e−
(x−µ)2

2σ2

19. Weinberger 2018.
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Where σ is the standard deviation, σ2 is the variance, µ is the mean, and x is the
input20.

5.2 The Model

First define k classes, C1, C2, . . . Ck. Each data point, of n data points, has features

x1, x2, . . . , xm and a class C. All features x are continuous variables and assumed

to be distributed on a Gaussian Distribution dependent on their class. So, the

distribution of pedal sizes of a rose is unrelated to that of a poppy. So for each

feature of each class, define a normal distribution

Jkm ∼ N (µkm, σ
2
km) .

Then go through all training data to estimate these distributions. For each class
and feature, calculate the mean

µkm =
1

pk

pk∑
i=1

dkim

where pk is the number of data points in class Ck in the training data and dki is
the ith data point in class k. Then the variance is

σ2
km =

1

pk

pk∑
i=1

(µkm − dkmi)
2

Once these values are recorded, we need to calculate the probability of a data point

being in a class. The data point can be represented as all of it’s features.

P (Ck|x1, x2, . . . , xm) =
P (Ck)P (x1, x2, . . . , xm|Ck)

P (x1, x2, . . . , xm)

Since the denominator is not influenced by Ck and stays constant, it does not help

us determine what class a data point is in so we can ignore it and only look at the

numerator21.

P (Ck)P (x1, x2, . . . , xm|Ck)

20. 2018.
21. Id.
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Because of the joint probability model

P (Ck)P (x1, x2, . . . , xm|Ck) = P (x1, x2, . . . , xm, Ck)

Then

P (x1, x2, . . . , xm, Ck) = P (x1|x2, . . . , xm, Ck)P (x2, . . . , xm, Ck)

Continuing this
P (x1|x2, . . . , xm, Ck)P (x2, . . . , xm, Ck)

= P (x1|x2, . . . , xm, Ck)P (x2|x3, . . . , xm, Ck)P (x3, . . . , xm, Ck)

= P (x1|x2, . . . , xm, Ck)P (x2|x3, . . . , xm, Ck) . . . P (xm−1|xm, Ck)P (xm|Ck)P (Ck)

Now we use the naive assumption from The Setup.

= P (x1|Ck)P (x2|Ck) . . . P (xm−1|Ck)P (xm|Ck)P (Ck)

These probabilities are all easy to calculate given the assumption of Normally
distributed features. The first probability to tackle is P (Ck). This can be estimated
simply by

Data points that are of class K

Total data points

To calculate the probabilities of P (xi|Ck) we use the estimated distribution from
before. So

P (xm|Ck) = normalPDF(xm, µkm, σ2
km)22

We then calculate this for every class k for this data point and the class with
highest resulting probability is the presumed class

P (x1|Ck)P (x2|Ck) . . . P (xm−1|Ck)P (xm|Ck)P (Ck)

6 Logistic Regression

6.1 The Setup

Logistic regression is a classification method that models the probability of a bi-

nary outcome using the logistic function. Instead of assuming normally distributed
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features, as with the Gaussian Naive Bayes’ Classifier, the model applies a trans-

form to a linear transformation of the features. The core of the model, of course,

is the logistic/sigmoid function

σ(z) =
1

1 + e−z

Where z is defined as a linear combination of m input features

z = β0 + β1x1 + β2x2 + · · ·+ βmxm

And, β0 is the intercept, sometimes also called the bias term. β1, β2, . . . , βm cor-
respond to features x1, x2, . . . , xm respectively23. The function transforms any
real-valued number into a value between 0 and 1, interpreted as the probability of
the data point belonging to a particular class. Since logistic regression is purely fo-
cused on modeling the probability via the logistic function, there is no requirement
to assume the independence among features.

6.2 The Model

In a binary classification problem with two classes, C0 and C1, let y be a response

variable where y = 1 corresponds to C1 and y = 0 corresponds to C0. The logistic

regression model expresses the probability that a data point belongs to C1 with

features x1, x2, . . . , xm as

P (y = 1|x1, x2, . . . , xm) =
1

1 + e−(β0+β1x1+β2x2+···+βmxm)

Since the two classes are complementary, a data point has to be one or the
other, the probability that that data point belongs to C0 is

P (y = 0|x1, x2, . . . , xm) = 1− P (y = 1|x1, x2, . . . , xm)
23. Daniel Jurafsky and James H. Martin. 2025. Speech and language processing: an

introduction to natural language processing, computational linguistics, and speech recogni-
tion with language models. 3rd. Online manuscript released January 12, 2025. Stanford.
https://web.stanford.edu/∼jurafsky/slp3/.
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The parameters β1, β2, . . . , βm are estimated from the training data using the

likelihood function. For a training set with n samples {x(i), y(i)}ni=1 the likelihood

function is

L(β) =
n∏

i=1

[P (y(i)|x(i))]y(i)[1− P (y(i)|x(i))]1−y(i)

This function is a way to measure how effective the β terms are. There are two
main terms in this function. If the true class is C1 then the first term is multiplied
in the product. If the true class is C1 then the second term is multiplied in
the product where each term just represents the confidence the model had for
that class. Taking the natural log makes the function a summation instead of a
product, this is called the log-likelihood function24.

ℓ(β) =
n∑

i=1

[
y(i) logP (y(i)|x(i)) +

(
1− y(i)

)
log

(
1− P (y(i)|x(i))

)]
Then the log-likelihood function is maximized using gradient descent or the

Newton-Raphson algorithm. New data points / testing data points are classified
by computing P (y = 1|x1, x2, . . . , xm).

Class =

{
C1 if P (y = 1|x1, x2, . . . , xm) > 0.5,

C0 otherwise.

24. Jurafsky and Martin 2025.
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Part II
Experiment

7 Overview of the data

To test the models described in this paper, two extremely popular data sets were
tested. We also will alter the data in ways that will change the effectiveness of the
models. The alteration of data will not remove any information from training
or testing. The alteration will be used to test the effectiveness of the models if a
researcher does not follow appropriate steps in collecting or cleaning data.

7.1 Breast Cancer Data

The breast cancer data set is the data set used to test the classification models.
Having only two classes, malignant and benign, it makes implementing the models
much easier. It also shows a very practical use of machine learning to help cancer
screening. The data set consists of 569 entries, which is less than ideal for training
a model. There are 212 malignant data points and 357 benign data points. Each
data point has 30 features25.

7.2 California Housing Data

The California housing data set is the data set used to test the regression models.
The data is ideal to test with linear regression because it is fair to assume at
least some features will scale linearly with house price. For example square feet
of a home · price per square foot is commonly used to value homes. The data
set consists of 20, 640 entries and 9 features per data point. Instead of collecting
data on individual homes, the data points represent blocks of adjacent homes. So
instead of bedrooms in a home, it is average bedrooms per home in a block. This
helps eliminate non-quantitative features like house nice a home is painted26.

25. scikit-learn developers. 2025b. Sklearn.datasets.load breast cancer. https : / / scikit -
learn.org/stable/modules/generated/sklearn.datasets.load breast cancer.html. Accessed
April 6, 2025.
26. scikit-learn developers. 2025a. Sklearn.datasets.fetch california housing. https://sci

kit- learn.org/stable/modules/generated/sklearn.datasets.fetch california housing.html.
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8 Heuristic Model Limitations

The fundamental models of machine learning, the ones focused on in this paper,
have lower requirements of data size than a massive neural network. They can
achieve stable and interpretive results at order of magnitudes lower than more
complicated models that make less assumptions about the data.

8.1 Logistic Regression

Although logistic regression is an incredibly powerful and popular model, requires
10 events per variable (EPV)27. So, in a dataset that has 30 features, 300 samples
should be enough.

8.2 Naive Bayes’ Classifier

Unlike logistic regression, Naive Bayes’ Classifiers have no generally accepted EPV.
However, the strong assumptions in the model, even when not true, generally result
in a classifier that works well28.

8.3 Discriminant Analysis

Discriminant analysis does not have an a general EPV. Instead it has an EPV of
3 for each group being separated29. So there would need to be 90 samples in each
group for a dataset with 30 features. So, the model is reasonable to apply to this
dataset.

8.4 Ordinary Least Squares

Ordinary Least Squares, and other regression models, have a general rule of thumb
for 10 samples per feature. However, some models have found that only 2 samples

Accessed April 6, 2025.
27. P. Peduzzi et al. 1996. A simulation study of the number of events per variable in

logistic regression analysis. Journal of Clinical Epidemiology 49 (12): 1373–1379. https:
//doi.org/10.1016/s0895-4356(96)00236-3.
28. Kevin P. Murphy. 2012. Machine learning: a probabilistic perspective. Cambridge,

MA: MIT Press. isbn: 9780262018029.
29. Peter C. Austin and Ewout W. Steyerberg. 2017. Events per variable (epv) and the

relative performance of different strategies for estimating the out-of-sample validity of
logistic regression models. Epub 2014 Nov 19, Statistical Methods in Medical Research 26
(2): 796–808. https://doi.org/10.1177/0962280214558972.
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Logistic Regression Discriminant Analysis Bayes’ Classifier
Accuracy % 98.25 95.32 93.57
Sensitivity % 98.41 90.48 90.48
Specificity % 98.15 98.15 95.37
Validity % 96.56 88.62 85.85

Runtime (seconds) 0.023 0.015 0.015

Table 1: Unaltered Data Testing Results (Classification)

are needed per feature for an accurate regression30. There is a wide range of
”acceptable” EPVs but, it is important to look at model performance instead of
having a set EPV for Ordinary Least Squares.

8.5 Ridge and LASSO Regression

Ridge and LASSO regression generally require less samples than Ordinary least
squares since they are more robust to overfitting. However, a general rule of
thumb could be the same at 10 samples per feature. Again though, checking
model performance is extremely important in determining if the model is trained
on enough data.

9 Comparison of unaltered data

Source Code and Figures

9.1 Classification

Refer to Table 3 for figures. In the measure of accuracy, logistic regression was best,
followed by LDA, followed by GNBC. All models had above 90% accuracy which
is very good. However, logistic regression outperformed the others significantly.
Although logistic regression performed the best, it is also the most energy intensive.
Instead of the closed form solutions of GNBC and LDA, logistic regression has to
have it’s coefficients, weights and bias, estimated. This estimation requires more
computing power. Discriminant analysis was the next best model and it has a

30. Peter C. Austin and Ewout W. Steyerberg. 2015. The number of subjects per variable
required in linear regression analyses. Journal of Clinical Epidemiology 68 (6): 627–636.
issn: 0895-4356. https://doi.org/10.1016/j.jclinepi.2014.12.014. https://www.jclinepi.
com/article/S0895-4356(15)00014-1/fulltext.
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closed form solution. Discriminant analysis had 0.015 seconds of runtime and
GNBC also had 0.015 seconds of runtime. Logistic regression had 0.023 seconds
of runtime, that is more than a 50% increase in runtime. While all three models
runtime is not very long, if they were used in an application where the model was
retrained very often, it could become expensive to use logistic regression compared
to the other models.

It is important to look at more than just accuracy, though, since that does
not paint a complete picture of a model’s performance. Sensitivity is an incredibly
important benchmark for cancer screening. This is because sensitivity relates
the true reported positives to the total amount of positives. This is important
in cancer screening because it is more important to minimize false negatives than
false positives. If a doctor screens a patient for cancer using a model and it reports
negative when the patient has cancer, it is much more detrimental than reporting
that the patient has cancer when they don’t. This is because further tests will be
conducted to make sure a person has cancer if the model reports it but, no further
tests will be conducted if the model reports a person does not. Again, logistic
regression is the best performing model. LDA and GNBC had identical and less
than ideal results.

Specificity is the inverse of sensitivity. Specificity relates the true reported neg-
atives to the total amount of negatives. This is less important in cancer screening
but, it is not ideal to send a patient to get more invasive tests for cancer unless it
is necessary. It is both expensive financially and personally to a patient. Logistic
regression performed by far the best in this benchmark while GNBC and LDA
performed identically.

Validity is just a balance of specificity and sensitivity. It is important to
examine when sensitivity and specificity are approximately of the same importance.
Although it is not as important as sensitivity in the case of cancer screening, it
does seem to order our models in a way that makes sense. Logistic regression being
the most effective then discriminant analysis being worse and then Gaussian Naive
Bayes’ Classifier being marginally worse than discriminant analysis.

9.2 Prediction

Ordinary Least Squares Ridge Regression LASSO Regression
R2 0.5833 0.6001 0.6006

Runtime (seconds) 0.005 0.066 5.606

Table 2: Unaltered Validation Results(Prediction)
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Refer to Table 2 for figures. For prediction models, there are 2 benchmarks to
observe, one is Mean Squared Error and the other is R2. However, R2 is actually
just a normalized Mean Squared Error which makes it easier to compare across
data sets. It represents how much of the response variable is able to be predicted
with the input variables. So a value of 0.5 would mean that 50% of a response
variable is predicted by the input variables. A value of 0 would mean that the
response variable is not at all correlated with the input variables.

All the models performed similarly, although the more complicated regressions
performed better than ordinary least squares. As talked about in section 3.1, the
weakness of ordinary least squares is that it can over fit to training data. This leads
to the model ”learning” the noise and the patterns instead of just the patterns.
Leading it to perform worse on testing data that has different noise.

Ridge regression and LASSO regression had very similar R2 values on the
validation set although LASSO regression was the best. However, R2 does not
paint a full picture, LASSO regression has to estimate β for many λ values while
ridge regression has a closed form solution for β for each λ. Ordinary least squares,
on the other hand, has just one closed form solution, making it much faster to run.
Lasso took over 1000 times longer to run than ordinary least squares. Ridge
regression was more than 10 times slower to run than ordinary least squares. The
nuance of runtime makes it a lot less obvious which model to choose.

10 Comparison of altered data

10.1 Classification

Logistic Regression Discriminant Analysis Bayes’ Classifier
Accuracy % 97.66 96.49 94.15
Sensitivity % 98.41 95.24 88.89
Specificity % 97.22 97.22 97.22
Validity % 95.63 92.46 86.11

Table 3: Altered Data Testing Results (Classification)

To alter the data for classification, we altered only the training data. We used a
technique called SMOTE (Synthetic Minority Over-sampling Technique) to gen-
erate synthetic data for the malignant class. This technique works by getting data
points in the minority class and then averaging their features with the features of
their closest neighbors, creating realistic data. This situation could occur when
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doctors report all malignant cases but, only some benign cases. This changes the
distribution of malignant and benign in the training data. However, a doctor is
likely to use the model on all tumors to determine if the tumor is malignant. This
creates a discrepancy between training and testing data distributions.

Since the training data has changed a bit, it is important to notice large changes
in benchmarks and ignore smaller ones. GNBC had one more false positive and
2 less false negatives with the altered data compared to the unaltered data. The
model has become a lot more likely to predict a positive, or malignant, result.
Since GNBC is a generative model, unlike the other two discriminative models, it
attempts to learn something about the classes themselves, including the likelihood
of a class in the distribution31. This means it performance can be drastically
altered when the training data and testing data have different distributions of
classes.

Discriminant analysis had much better performance on the altered data since
it was likely able to calculate the class means, along with having more separation
between classes. Logistic regression had only 1 more false negative than the un-
altered data. Discriminative models try to figure out differences between classes
instead of trying to figure out what a class is. For example, in a data set of cats
and dogs, if all the dogs wear collars and none of the cats do, that is sufficient for
discriminative models. Whereas a generative model will try to figure out what a
cat looks like and what a dog looks like instead of finding discriminative features.

10.2 Prediction

Note: Ordinary least squares code had to be modified because SKLearn uses
singular value decomposition under the hood and is able to find a solution even with
a singular matrix32. Therefore, we took a more bare-bones approach with numpy
and direct matrix calculations. Tested λ ranges for lasso and ridge regression were
condensed closer to 1. This is because the same λs should be tested for ridge and
lasso. Lasso would not converge for smaller λ.

Ordinary Least Squares Ridge Regression Lasso Regression
R2 −357.85 0.58 0.60

Table 4: Altered Data(Prediction)

31. 2025.
32. SciPy Developers. 2023. Scipy/linalg/ basic.py at commit

ef7a30c56dbaddea1688fd2dfcb56022a5d3bb07. https : / / github . com / scipy / scipy /
blob / ef7a30c56dbaddea1688fd2dfcb56022a5d3bb07 / scipy / linalg / basic . py # L1326.
Accessed: 2025-04-06.
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Figure 4: Less than 0 R2 Value

To alter the data for prediction, we added a column to X which was x⃗3 ·2. This
made a linearly dependent column. Technically, in programming, floating point
operations have error so the new column is not fully linearly dependent. It is very
close and shows the power of ridge and lasso regression. One way in which this
data could have been created by a rookie data researcher is when he or she would
like to ”add” more information to a data set after collecting the data. He or she
decides that the third column, ”average rooms”, is more important and doubles
the column and adds it to the end of the data. This shows a fundamental lack of
understanding of how linear regression works. The results of his or her analysis
now seems to be a mathematical or logical bug in the program.

Although it is normally impossible for an R2 value to be negative, it is possible
if the model is extremely poorly fit. A 0 R2 value is possible by estimating the
data with the mean value. This means that the ordinary least squares model is
performing worse than just taking the average of the data, see Figure 4. Ridge
and Lasso regression also perform worse than the unaltered data although it is not
very significant and could be due also in part to the change in the tested λ range.

This shows the danger of having a model that becomes so overfit, that it is
underfit to the testing data.
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11 Conclusion

In summary, this thesis provides an in-depth analysis of fundamental machine
learning models for both prediction and classification. It highlights their respec-
tive strengths and vulnerabilities. The comparative study of logistic regression,
discriminant analysis, and Bayes’ classifier on the breast cancer dataset illustrated
that while logistic regression achieved higher benchmark, it also demanded higher
computational resources. The higher resource usage coming from its iterative co-
efficient estimation. This trade-off demonstrates the importance in selection of
models that balance performance and computational efficiency a necessary task.

For prediction models, the evaluation of ordinary least squares, ridge, and lasso
regression on the California housing data illustrated the risk in overfitting. The ex-
periments demonstrated that while ordinary least squares can perform adequately
on well-behaved data, small issues with the data (near collinearity) can severely
degrade its performance. In contrast, ridge and lasso regression, through their reg-
ularization techniques, proved more robust in data manipulation. However, this
robustness came at the cost of increased computational time, especially for lasso
regression.

The intentional alteration of datasets to simulate real-world data collection/analysis
challenges demonstrated the vital need for careful data preprocessing and collec-
tion. For classification models, this came from using the same distribution of
data for training and testing. For prediction, this came at not collecting collinear
columns when using ordinary least squares regression. These observed challenges
in model performance serve as a cautionary example for researchers and data col-
lectors alike.

Overall, this work reinforces that the choice of model and preprocessing meth-
ods must be guided by the characteristics of the dataset and requirements of the
application. As machine learning continues evolving, so too must the methodology
for model selection, validation, and interpretation to ensure the derived insights
are accurate and actionable.
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